Feat:Create the Basic Ai Governance Package to use has a guide

This commit is contained in:
2025-11-06 23:26:50 +05:30
parent 61d02d1dac
commit 9a3d073815
14 changed files with 47207 additions and 0 deletions

View File

@@ -0,0 +1,126 @@
"""
Data Processor Module
Handles data loading, preprocessing, and feature detection
"""
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
import re
class DataProcessor:
"""Process and prepare data for analysis"""
def __init__(self, df):
self.df = df.copy()
self.original_df = df.copy()
self.target_column = None
self.protected_attributes = []
self.numerical_features = []
self.categorical_features = []
self.feature_names = []
self.encoders = {}
self.scaler = StandardScaler()
self.X_train = None
self.X_test = None
self.y_train = None
self.y_test = None
# Auto-detect column types
self._detect_column_types()
def _detect_column_types(self):
"""Automatically detect numerical and categorical columns"""
for col in self.df.columns:
if self.df[col].dtype in ['int64', 'float64']:
# Check if it's actually categorical (few unique values)
if self.df[col].nunique() < 10 and self.df[col].nunique() / len(self.df) < 0.05:
self.categorical_features.append(col)
else:
self.numerical_features.append(col)
else:
self.categorical_features.append(col)
def _detect_pii_columns(self):
"""Detect potential PII columns"""
pii_keywords = [
'name', 'email', 'phone', 'address', 'ssn', 'social',
'passport', 'license', 'id', 'zip', 'postal'
]
pii_columns = []
for col in self.df.columns:
col_lower = col.lower()
if any(keyword in col_lower for keyword in pii_keywords):
pii_columns.append(col)
return pii_columns
def prepare_data(self, test_size=0.2, random_state=42):
"""Prepare data for model training"""
# Handle missing values
self.df = self.df.dropna()
# Separate features and target
if self.target_column is None:
# Auto-detect target (last column or column with 'target', 'label', 'status')
target_candidates = [col for col in self.df.columns
if any(keyword in col.lower() for keyword in ['target', 'label', 'status', 'class'])]
self.target_column = target_candidates[0] if target_candidates else self.df.columns[-1]
# Prepare features
feature_cols = [col for col in self.df.columns if col != self.target_column]
X = self.df[feature_cols].copy()
y = self.df[self.target_column].copy()
# Encode categorical variables
for col in self.categorical_features:
if col in X.columns:
le = LabelEncoder()
X[col] = le.fit_transform(X[col].astype(str))
self.encoders[col] = le
# Store feature names
self.feature_names = X.columns.tolist()
# Split data
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
X, y, test_size=test_size, random_state=random_state, stratify=y if y.nunique() < 10 else None
)
# Scale numerical features
numerical_cols = [col for col in self.numerical_features if col in self.X_train.columns]
if numerical_cols:
self.X_train[numerical_cols] = self.scaler.fit_transform(self.X_train[numerical_cols])
self.X_test[numerical_cols] = self.scaler.transform(self.X_test[numerical_cols])
return self.X_train, self.X_test, self.y_train, self.y_test
def get_data_summary(self):
"""Get summary statistics of the dataset"""
summary = {
'total_records': len(self.df),
'total_features': len(self.df.columns),
'numerical_features': len(self.numerical_features),
'categorical_features': len(self.categorical_features),
'missing_values': self.df.isnull().sum().to_dict(),
'target_column': self.target_column,
'protected_attributes': self.protected_attributes,
'pii_columns': self._detect_pii_columns(),
'target_distribution': self.df[self.target_column].value_counts().to_dict() if self.target_column else {}
}
return summary
def get_protected_attribute_stats(self):
"""Get statistics for protected attributes"""
stats = {}
for attr in self.protected_attributes:
if attr in self.df.columns:
stats[attr] = {
'unique_values': self.df[attr].nunique(),
'value_counts': self.df[attr].value_counts().to_dict(),
'missing_count': self.df[attr].isnull().sum()
}
return stats