feat: csv generator

This commit is contained in:
Chaithz
2025-11-07 09:30:45 +05:30
parent 4ebff7b0e7
commit f1af97f7c9

View File

@@ -1,44 +1,167 @@
import csv import csv
import re import re
from pathlib import Path from pathlib import Path
from collections import Counter
from datetime import datetime
ROOT = Path("../../archiv/Data/Politics") ROOT = Path("../Data/Politics")
email_re = re.compile(r"[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+") # Try to import spaCy, fall back to basic extraction if not available
phone_re = re.compile(r"(?:\+?\d{1,3}[-.\s]?)?(?:\(?\d{2,4}\)?[-.\s]?)?\d{3,4}[-.\s]?\d{3,4}") try:
ssn_re = re.compile(r"\b\d{3}[-\s]?\d{2}[-\s]?\d{4}\b") import spacy
uuid_re = re.compile(r"\b[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}\b") nlp = spacy.load("en_core_web_sm")
pan_re = re.compile(r"\b[A-Z]{5}\d{4}[A-Z]\b") USE_SPACY = True
iban_re = re.compile(r"\b[A-Z]{2}\d{2}[A-Z0-9]{1,30}\b") except:
USE_SPACY = False
# Regex patterns for deterministic detection
patterns = { patterns = {
"EMAIL": email_re, "EMAIL": re.compile(r"[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+"),
"PHONE": phone_re, "PHONE": re.compile(r"(?:\+?\d{1,3}[-.\s]?)?(?:\(?\d{2,4}\)?[-.\s]?)?\d{3,4}[-.\s]?\d{3,4}"),
"SSN": ssn_re, "UUID": re.compile(r"\b[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}\b"),
"UUID": uuid_re, "IBAN": re.compile(r"\b[A-Z]{2}\d{2}[A-Z0-9]{1,30}\b"),
"PAN": pan_re, "DATE": re.compile(r"\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b|\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b|(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}"),
"IBAN": iban_re, "URL": re.compile(r"https?://[^\s]+"),
"SSN": re.compile(r"\b\d{3}-\d{2}-\d{4}\b"),
} }
def find_entities(text): def find_entities(text):
found = [] """Extract entities using regex patterns."""
found = {}
for label, pattern in patterns.items(): for label, pattern in patterns.items():
for m in pattern.finditer(text): matches = pattern.findall(text)
found.append(f"{label}: {m.group(0)}") if matches:
found[label] = list(set(matches))[:5] # Limit to 5 per type
return found return found
with open("discovery_dataset.csv", "w", newline="", encoding="utf-8") as csvfile: def extract_with_spacy(text):
writer = csv.writer(csvfile) """Extract named entities using spaCy."""
writer.writerow(["filename", "text", "detected_entities"]) if not USE_SPACY:
return {}, {}, {}
doc = nlp(text[:10000]) # Limit text length for performance
persons = []
orgs = []
locations = []
for ent in doc.ents:
if ent.label_ == "PERSON":
persons.append(ent.text)
elif ent.label_ == "ORG":
orgs.append(ent.text)
elif ent.label_ in ["GPE", "LOC"]:
locations.append(ent.text)
# Return most common entities
return (
dict(Counter(persons).most_common(5)),
dict(Counter(orgs).most_common(5)),
dict(Counter(locations).most_common(5))
)
def extract_metadata(text, filename):
"""Extract basic metadata from text."""
metadata = {
"char_count": len(text),
"word_count": len(text.split()),
"line_count": text.count('\n') + 1,
"file_extension": Path(filename).suffix,
}
return metadata
def detect_content_type(text):
"""Heuristic content type detection."""
text_lower = text.lower()
# Check for common document types
if any(word in text_lower[:1000] for word in ['dear', 'sincerely', 'regards']):
return "letter"
elif any(word in text_lower[:500] for word in ['article', 'section', 'amendment']):
return "legal"
elif any(word in text_lower[:500] for word in ['press release', 'for immediate release']):
return "press_release"
elif re.search(r'^\s*#', text[:100], re.MULTILINE):
return "markdown"
elif '<html' in text_lower[:200]:
return "html"
else:
return "unknown"
# Define fieldnames
fieldnames = [
"filename", "file_extension", "char_count", "word_count", "line_count",
"content_type", "text_preview",
"EMAIL", "PHONE", "UUID", "IBAN", "DATE", "URL", "SSN",
"persons", "organizations", "locations"
]
print("Processing files...")
with open("discovery_dataset.csv", "w", newline="", encoding="utf-8") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
file_count = 0
for path in ROOT.rglob("*"): for path in ROOT.rglob("*"):
if not path.is_file(): if not path.is_file():
continue continue
# Skip binary files
if path.suffix.lower() in ['.exe', '.dll', '.so', '.dylib', '.bin', '.jpg', '.png', '.gif', '.pdf']:
continue
try: try:
text = path.read_text(encoding="utf-8", errors="ignore") text = path.read_text(encoding="utf-8", errors="ignore")
except Exception: except Exception as e:
print(f" Error reading {path.name}: {e}")
continue continue
if not text.strip():
continue
file_count += 1
if file_count % 10 == 0:
print(f"Processed {file_count} files...")
# Initialize row
row = {"filename": str(path.relative_to(ROOT.parent))}
# Extract metadata
metadata = extract_metadata(text, path.name)
row.update(metadata)
# Detect content type
row["content_type"] = detect_content_type(text)
row["text_preview"] = text[:500].replace('\n', ' ').replace('\r', ' ')
# Extract entities with regex
entities = find_entities(text) entities = find_entities(text)
if text.strip(): # skip empty for key, values in entities.items():
writer.writerow([str(path), text[:5000], "; ".join(entities)]) # limit length if huge row[key] = "; ".join(values) if values else ""
# Fill in missing pattern fields
for pattern_key in ["EMAIL", "PHONE", "UUID", "IBAN", "DATE", "URL", "SSN"]:
if pattern_key not in row:
row[pattern_key] = ""
# Extract named entities with spaCy
if USE_SPACY:
persons, orgs, locs = extract_with_spacy(text)
row["persons"] = "; ".join([f"{k}({v})" for k, v in persons.items()])
row["organizations"] = "; ".join([f"{k}({v})" for k, v in orgs.items()])
row["locations"] = "; ".join([f"{k}({v})" for k, v in locs.items()])
else:
row["persons"] = ""
row["organizations"] = ""
row["locations"] = ""
writer.writerow(row)
print(f"\nComplete! Processed {file_count} files.")
print(f"Output: discovery_dataset.csv")
# Print summary statistics
if file_count > 0:
print("\nTo install spaCy for better entity extraction:")
print(" pip install spacy")
print(" python -m spacy download en_core_web_sm")