""" Data Cleaning Router Handles PII detection and anonymization endpoints """ from fastapi import APIRouter, File, UploadFile, HTTPException, Form from fastapi.responses import JSONResponse import pandas as pd import numpy as np import io import os import json from datetime import datetime from typing import Dict, Any, Optional # Import cleaning module import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) from data_cleaning import DataCleaner router = APIRouter() def convert_to_serializable(obj): """Convert numpy/pandas types to native Python types for JSON serialization""" if isinstance(obj, (np.integer, np.int64, np.int32)): return int(obj) elif isinstance(obj, (np.floating, np.float64, np.float32)): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, dict): return {key: convert_to_serializable(value) for key, value in obj.items()} elif isinstance(obj, list): return [convert_to_serializable(item) for item in obj] return obj @router.post("/clean") async def clean_dataset( file: UploadFile = File(...), custom_strategies: Optional[str] = Form(None) ): """ Clean uploaded dataset - detect and anonymize PII - **file**: CSV file to clean - **custom_strategies**: Optional JSON string mapping column names to strategy choices Format: {"column_name": {"enabled": true, "strategy": "HASHING"}} Returns: - Cleaned dataset statistics - PII detections and anonymization actions - Report file path for download - Cleaned CSV file path for download """ # Validate file type if not file.filename.endswith('.csv'): raise HTTPException(status_code=400, detail="Only CSV files are supported") # Parse custom strategies if provided strategy_map = None if custom_strategies: try: strategy_map = json.loads(custom_strategies) print(f"Using custom strategies for {len(strategy_map)} columns") except json.JSONDecodeError: raise HTTPException(status_code=400, detail="Invalid custom_strategies JSON format") try: # Read uploaded file contents = await file.read() df = pd.read_csv(io.BytesIO(contents)) if df.empty: raise HTTPException(status_code=400, detail="Uploaded file is empty") # Initialize Data Cleaner (with GPU if available) print(f"Cleaning dataset: {file.filename} ({len(df)} rows, {len(df.columns)} columns)") cleaner = DataCleaner(df, use_gpu=True) # If custom strategies provided, filter and apply only enabled columns risky_features_to_clean = None if strategy_map: # Only clean columns that are enabled in the strategy map enabled_columns = [col for col, config in strategy_map.items() if config.get('enabled', True)] risky_features_to_clean = enabled_columns print(f" Using custom strategies for {len(enabled_columns)} enabled columns") # Store the strategy choices for the cleaner to use cleaner.custom_strategy_map = { col: config['strategy'] for col, config in strategy_map.items() if config.get('enabled', True) } # Run cleaning (non-interactive mode for API) cleaned_df, audit_report = cleaner.clean( risky_features=risky_features_to_clean, # Use custom list if provided, otherwise auto-detect interactive=False, # No user prompts in API mode scan_all_cells=True ) # Generate filenames timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") safe_filename = file.filename.replace('.csv', '') # Save cleaned CSV cleaned_csv_filename = f"cleaned_{safe_filename}_{timestamp}.csv" cleaned_csv_path = os.path.join("reports", cleaned_csv_filename) full_cleaned_csv_path = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(__file__))), cleaned_csv_path ) cleaner.save_cleaned_data(cleaned_df, full_cleaned_csv_path) # Save audit report audit_report_filename = f"cleaning_audit_{safe_filename}_{timestamp}.json" audit_report_path = os.path.join("reports", audit_report_filename) full_audit_report_path = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(__file__))), audit_report_path ) cleaner.save_audit_report(audit_report, full_audit_report_path) # Prepare response response_data = { "status": "success", "filename": file.filename, "dataset_info": { "original_rows": int(audit_report["metadata"]["original_rows"]), "original_columns": int(audit_report["metadata"]["original_columns"]), "cleaned_rows": int(audit_report["metadata"]["cleaned_rows"]), "cleaned_columns": int(audit_report["metadata"]["cleaned_columns"]) }, "gpu_acceleration": audit_report["metadata"].get("gpu_acceleration", { "enabled": False, "device": "CPU" }), "summary": { "columns_removed": audit_report["summary"]["columns_removed"], "columns_anonymized": audit_report["summary"]["columns_anonymized"], "total_cells_affected": int(audit_report["summary"]["total_cells_affected"]) }, "pii_detections": { col: { "action": details["action"], "entity_types": details["entity_types_found"], "num_affected_rows": int(details.get("num_affected_rows", 0)), "examples": details.get("examples", [])[:2] # Show 2 examples } for col, details in audit_report["details"].items() }, "gdpr_compliance": audit_report["compliance"]["gdpr_articles_applied"], "files": { "cleaned_csv": f"/{cleaned_csv_path}", "audit_report": f"/{audit_report_path}" }, "timestamp": datetime.now().isoformat() } # Convert all numpy/pandas types to native Python types response_data = convert_to_serializable(response_data) return JSONResponse(content=response_data) except pd.errors.EmptyDataError: raise HTTPException(status_code=400, detail="File is empty or invalid CSV format") except Exception as e: print(f"Error during cleaning: {str(e)}") raise HTTPException(status_code=500, detail=f"Cleaning failed: {str(e)}")