mirror of
https://github.com/PlatypusPus/MushroomEmpire.git
synced 2026-02-07 22:18:59 +00:00
Merge branch 'main' of https://github.com/PlatypusPus/MushroomEmpire
This commit is contained in:
@@ -117,6 +117,7 @@ class ReportGenerator:
|
||||
privacy = self.risk_results.get('privacy_risks', {})
|
||||
|
||||
return {
|
||||
'pii_detected': privacy.get('pii_detected', []), # Include full PII detections array
|
||||
'pii_count': len(privacy.get('pii_detected', [])),
|
||||
'anonymization_level': privacy.get('anonymization_level', 'UNKNOWN'),
|
||||
'exposure_risk_count': len(privacy.get('exposure_risks', [])),
|
||||
|
||||
@@ -123,10 +123,14 @@ async def analyze_dataset(file: UploadFile = File(...)):
|
||||
},
|
||||
"risk_assessment": {
|
||||
"overall_risk_score": risk_assessment.get("overall_risk_score", 0),
|
||||
"privacy_risks": risk_assessment.get("privacy_risks", []),
|
||||
"ethical_risks": risk_assessment.get("ethical_risks", []),
|
||||
"compliance_risks": risk_assessment.get("risk_categories", {}).get("compliance_risks", []),
|
||||
"data_quality_risks": risk_assessment.get("risk_categories", {}).get("data_quality_risks", [])
|
||||
"risk_level": risk_assessment.get("risk_level", "LOW"),
|
||||
"presidio_enabled": risk_assessment.get("presidio_enabled", False),
|
||||
"privacy_risks": risk_assessment.get("privacy_risks", {}),
|
||||
"ethical_risks": risk_assessment.get("ethical_risks", {}),
|
||||
"compliance_risks": risk_assessment.get("compliance_risks", {}),
|
||||
"risk_categories": risk_assessment.get("risk_categories", {}),
|
||||
"violations": risk_assessment.get("violations", []),
|
||||
"insights": risk_assessment.get("insights", [])
|
||||
},
|
||||
"recommendations": report.get("recommendations", []),
|
||||
"report_file": f"/{report_path}",
|
||||
|
||||
@@ -1,7 +1,9 @@
|
||||
import ollama
|
||||
import chromadb
|
||||
from pypdf import PdfReader
|
||||
from fastapi import FastAPI
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
import uvicorn
|
||||
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
@@ -34,11 +36,24 @@ for i, chunk in enumerate(chunks):
|
||||
print("Embeddings done!")
|
||||
|
||||
|
||||
# Allow browser calls from the frontend
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
class ChatRequest(BaseModel):
|
||||
prompt: str
|
||||
|
||||
@app.post("/chat")
|
||||
async def chat_bot(prompt: str):
|
||||
if not prompt:
|
||||
return
|
||||
query = prompt
|
||||
async def chat_bot(prompt: str | None = None, body: ChatRequest | None = None):
|
||||
# Accept prompt from either query (?prompt=) or JSON body {"prompt": "..."}
|
||||
query = prompt or (body.prompt if body else None)
|
||||
if not query:
|
||||
raise HTTPException(status_code=400, detail="Missing prompt")
|
||||
response = ollama.embed(model="nomic-embed-text", input=query)
|
||||
query_embedding = response["embeddings"][0]
|
||||
|
||||
|
||||
38
frontend/app/api/chat/route.ts
Normal file
38
frontend/app/api/chat/route.ts
Normal file
@@ -0,0 +1,38 @@
|
||||
import { NextResponse } from 'next/server';
|
||||
|
||||
const CHAT_HOST = process.env.CHAT_API_URL || process.env.NEXT_PUBLIC_CHAT_API_URL || 'https://f52c8f4e7dfc.ngrok-free.app';
|
||||
|
||||
export async function POST(req: Request) {
|
||||
try {
|
||||
const body = await req.json().catch(() => ({}));
|
||||
const prompt = typeof body?.prompt === 'string' ? body.prompt : '';
|
||||
if (!prompt.trim()) {
|
||||
return NextResponse.json({ detail: 'Missing prompt' }, { status: 400 });
|
||||
}
|
||||
|
||||
const controller = new AbortController();
|
||||
const timeout = setTimeout(() => controller.abort(), 120_000);
|
||||
try {
|
||||
const upstream = await fetch(`${CHAT_HOST}/chat`, {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json', 'Accept': 'application/json' },
|
||||
body: JSON.stringify({ prompt }),
|
||||
signal: controller.signal,
|
||||
});
|
||||
|
||||
const text = await upstream.text();
|
||||
let json: any;
|
||||
try { json = JSON.parse(text); } catch { json = { response: text }; }
|
||||
|
||||
if (!upstream.ok) {
|
||||
return NextResponse.json(json || { detail: 'Chat failed' }, { status: upstream.status });
|
||||
}
|
||||
return NextResponse.json(json);
|
||||
} finally {
|
||||
clearTimeout(timeout);
|
||||
}
|
||||
} catch (err: any) {
|
||||
const msg = err?.name === 'AbortError' ? 'Request timed out – model may be overloaded.' : (err?.message || 'Unexpected error');
|
||||
return NextResponse.json({ detail: msg }, { status: 500 });
|
||||
}
|
||||
}
|
||||
@@ -1,23 +1,15 @@
|
||||
"use client";
|
||||
import Link from 'next/link';
|
||||
import { usePathname } from 'next/navigation';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { useState } from 'react';
|
||||
|
||||
export function Navbar() {
|
||||
const pathname = usePathname();
|
||||
const onTry = pathname?.startsWith('/try');
|
||||
const [scrolled, setScrolled] = useState(false);
|
||||
const [menuOpen, setMenuOpen] = useState(false);
|
||||
|
||||
useEffect(() => {
|
||||
const onScroll = () => setScrolled(window.scrollY > 4);
|
||||
onScroll();
|
||||
window.addEventListener('scroll', onScroll, { passive: true });
|
||||
return () => window.removeEventListener('scroll', onScroll);
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<nav className={`w-full sticky top-0 z-50 transition-colors ${scrolled ? 'bg-white/90 border-b border-slate-200/70 shadow-sm' : 'bg-white/70 border-b border-transparent'}`}>
|
||||
<nav className={`w-full sticky top-0 z-50 bg-white border-b border-slate-200 shadow-md`}>
|
||||
<div className="container-max flex items-center justify-between h-16">
|
||||
<Link href="/" className="font-semibold text-brand-700 text-lg tracking-tight">Nordic Privacy AI</Link>
|
||||
{/* Desktop nav */}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,41 +1,118 @@
|
||||
"use client";
|
||||
import { useState } from "react";
|
||||
import { useState, useRef, useEffect } from "react";
|
||||
import { chatWithCopilot } from "../../lib/api";
|
||||
|
||||
const CHAT_ENDPOINT = process.env.NEXT_PUBLIC_CHAT_API_URL || 'https://f52c8f4e7dfc.ngrok-free.app';
|
||||
|
||||
export function ChatbotPanel() {
|
||||
const [messages] = useState<{ role: "user" | "assistant"; content: string }[]>([
|
||||
{ role: "assistant", content: "Hi! I'll help you interpret compliance results soon." },
|
||||
const [messages, setMessages] = useState<{ role: "user" | "assistant"; content: string; pending?: boolean; error?: boolean }[]>([
|
||||
{ role: "assistant", content: "Hi! I'm your Privacy Copilot. Ask me about compliance, GDPR articles, or dataset risks." },
|
||||
]);
|
||||
const [input, setInput] = useState("");
|
||||
const [isLoading, setIsLoading] = useState(false);
|
||||
const [delayedError, setDelayedError] = useState<string | null>(null);
|
||||
const scrollRef = useRef<HTMLDivElement | null>(null);
|
||||
|
||||
return (
|
||||
<div className="flex flex-col h-full border-l border-slate-200 bg-white/80">
|
||||
useEffect(() => {
|
||||
if (scrollRef.current) {
|
||||
scrollRef.current.scrollTop = scrollRef.current.scrollHeight;
|
||||
}
|
||||
}, [messages]);
|
||||
|
||||
async function handleSubmit(e: React.FormEvent) {
|
||||
e.preventDefault();
|
||||
const prompt = input.trim();
|
||||
if (!prompt || isLoading) return;
|
||||
setInput("");
|
||||
setDelayedError(null);
|
||||
setMessages(prev => [...prev, { role: "user", content: prompt }, { role: "assistant", content: "Thinking…", pending: true }]);
|
||||
setIsLoading(true);
|
||||
|
||||
// Delay window for showing errors (avoid instant flashing if slow model)
|
||||
const errorDisplayDelayMs = 4_000;
|
||||
let canShowError = false;
|
||||
const delayTimer = setTimeout(() => { canShowError = true; if (delayedError) showErrorBubble(delayedError); }, errorDisplayDelayMs);
|
||||
|
||||
function showErrorBubble(msg: string) {
|
||||
setMessages(prev => prev.map(m => m.pending ? { ...m, content: msg, pending: false, error: true } : m));
|
||||
}
|
||||
|
||||
try {
|
||||
let responseText: string | null = null;
|
||||
// Primary attempt via shared client
|
||||
try {
|
||||
responseText = await chatWithCopilot(prompt);
|
||||
} catch (primaryErr: any) {
|
||||
// Fallback: replicate working curl (query param, empty body)
|
||||
try {
|
||||
const res = await fetch(`${CHAT_ENDPOINT}/chat?prompt=${encodeURIComponent(prompt)}` , {
|
||||
method: 'POST',
|
||||
headers: { 'accept': 'application/json' },
|
||||
body: ''
|
||||
});
|
||||
if (res.ok) {
|
||||
const j = await res.json();
|
||||
responseText = j.response || JSON.stringify(j);
|
||||
} else {
|
||||
throw primaryErr;
|
||||
}
|
||||
} catch { throw primaryErr; }
|
||||
}
|
||||
clearTimeout(delayTimer);
|
||||
setMessages(prev => prev.map(m => m.pending ? { ...m, content: responseText || 'No response text', pending: false } : m));
|
||||
} catch (err: any) {
|
||||
clearTimeout(delayTimer);
|
||||
const errMsg = err?.message || 'Unexpected error';
|
||||
if (canShowError) {
|
||||
showErrorBubble(errMsg);
|
||||
} else {
|
||||
setDelayedError(errMsg);
|
||||
}
|
||||
} finally {
|
||||
setIsLoading(false);
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="flex flex-col h-full border-l border-slate-200 bg-white/80">
|
||||
<div className="h-14 flex items-center px-4 border-b border-slate-200">
|
||||
<h2 className="font-semibold text-sm text-brand-700">Privacy Copilot</h2>
|
||||
</div>
|
||||
<div className="flex-1 overflow-y-auto p-4 space-y-3">
|
||||
<div ref={scrollRef} className="flex-1 overflow-y-auto p-4 space-y-3">
|
||||
{messages.map((m, i) => (
|
||||
<div
|
||||
key={i}
|
||||
className={"rounded-md px-3 py-2 text-sm max-w-[80%] " + (m.role === "assistant" ? "bg-brand-600/10 text-brand-800" : "bg-brand-600 text-white ml-auto")}
|
||||
className={"rounded-md px-3 py-2 text-sm max-w-[80%] whitespace-pre-wrap " +
|
||||
(m.role === "assistant"
|
||||
? m.error
|
||||
? "bg-red-50 text-red-700 border border-red-200"
|
||||
: m.pending
|
||||
? "bg-brand-600/10 text-brand-700 animate-pulse"
|
||||
: "bg-brand-600/10 text-brand-800"
|
||||
: "bg-brand-600 text-white ml-auto")}
|
||||
>
|
||||
{m.content}
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
<div className="p-3 border-t border-slate-200">
|
||||
<form className="flex gap-2" onSubmit={e => e.preventDefault()}>
|
||||
<form className="flex gap-2" onSubmit={handleSubmit}>
|
||||
<input
|
||||
disabled
|
||||
placeholder="Chat coming soon..."
|
||||
className="flex-1 rounded-md border border-slate-300 bg-slate-50 px-3 py-2 text-sm focus:outline-none focus:ring-2 focus:ring-brand-400 disabled:opacity-60"
|
||||
value={input}
|
||||
onChange={e => setInput(e.target.value)}
|
||||
placeholder="Ask about GDPR, compliance, privacy risks..."
|
||||
className="flex-1 rounded-md border border-slate-300 bg-white px-3 py-2 text-sm focus:outline-none focus:ring-2 focus:ring-brand-400 disabled:opacity-60"
|
||||
disabled={isLoading}
|
||||
/>
|
||||
<button
|
||||
type="submit"
|
||||
disabled
|
||||
disabled={!input.trim() || isLoading}
|
||||
className="rounded-md bg-brand-600 text-white px-4 py-2 text-sm font-medium disabled:opacity-50"
|
||||
>
|
||||
Send
|
||||
{isLoading ? 'Sending…' : 'Send'}
|
||||
</button>
|
||||
</form>
|
||||
<p className="mt-2 text-[11px] text-slate-500">Responses may take up to 1–2 minutes while the local model generates output.</p>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
*/
|
||||
|
||||
const API_BASE_URL = process.env.NEXT_PUBLIC_API_URL || 'http://localhost:8000';
|
||||
// Base URL for chat backend (do not include path)
|
||||
const CHAT_API_BASE_URL = process.env.NEXT_PUBLIC_CHAT_API_URL || 'https://f52c8f4e7dfc.ngrok-free.app';
|
||||
|
||||
export interface AnalyzeResponse {
|
||||
status: string;
|
||||
@@ -188,3 +190,42 @@ export async function healthCheck() {
|
||||
const response = await fetch(`${API_BASE_URL}/health`);
|
||||
return response.json();
|
||||
}
|
||||
|
||||
/**
|
||||
* Chat with Privacy Copilot (ngrok tunneled backend)
|
||||
* Provides a resilient call with extended timeout and delayed error surfacing.
|
||||
*/
|
||||
export async function chatWithCopilot(prompt: string): Promise<string> {
|
||||
if (!prompt.trim()) throw new Error('Empty prompt');
|
||||
|
||||
const controller = new AbortController();
|
||||
const timeoutMs = 120_000; // allow up to 2 minutes for slow local model
|
||||
const timeout = setTimeout(() => controller.abort(), timeoutMs);
|
||||
|
||||
try {
|
||||
// EXACT same request style as the provided curl:
|
||||
// curl -X POST 'https://<host>/chat?prompt=hello' -H 'accept: application/json' -d ''
|
||||
const url = `${CHAT_API_BASE_URL}/chat?prompt=${encodeURIComponent(prompt)}`;
|
||||
const res = await fetch(url, {
|
||||
method: 'POST',
|
||||
headers: { 'accept': 'application/json' },
|
||||
body: '', // empty body
|
||||
signal: controller.signal,
|
||||
});
|
||||
if (!res.ok) {
|
||||
let detail: any = undefined;
|
||||
try { detail = await res.json(); } catch {}
|
||||
throw new Error(detail?.detail || `Chat failed (${res.status})`);
|
||||
}
|
||||
|
||||
const json = await res.json();
|
||||
return json.response || JSON.stringify(json);
|
||||
} catch (err: any) {
|
||||
if (err?.name === 'AbortError') {
|
||||
throw new Error('Request timed out – model may be overloaded.');
|
||||
}
|
||||
throw err;
|
||||
} finally {
|
||||
clearTimeout(timeout);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,620 +0,0 @@
|
||||
"use client";
|
||||
import { TryTab } from "./Sidebar";
|
||||
import { useState, useRef, useCallback, useEffect } from "react";
|
||||
import { saveLatestUpload, getLatestUpload, deleteLatestUpload } from "../../lib/indexeddb";
|
||||
import { analyzeDataset, cleanDataset, getReportUrl, type AnalyzeResponse, type CleanResponse } from "../../lib/api";
|
||||
|
||||
interface CenterPanelProps {
|
||||
tab: TryTab;
|
||||
onAnalyze?: () => void;
|
||||
}
|
||||
|
||||
interface UploadedFileMeta {
|
||||
name: string;
|
||||
size: number;
|
||||
type: string;
|
||||
contentPreview: string;
|
||||
}
|
||||
|
||||
interface TablePreviewData {
|
||||
headers: string[];
|
||||
rows: string[][];
|
||||
origin: 'csv';
|
||||
}
|
||||
|
||||
export function CenterPanel({ tab, onAnalyze }: CenterPanelProps) {
|
||||
const PREVIEW_BYTES = 64 * 1024; // read first 64KB slice for large-file preview
|
||||
const [fileMeta, setFileMeta] = useState<UploadedFileMeta | null>(null);
|
||||
const [uploadedFile, setUploadedFile] = useState<File | null>(null);
|
||||
const [isDragging, setIsDragging] = useState(false);
|
||||
const [progress, setProgress] = useState<number>(0);
|
||||
const [progressLabel, setProgressLabel] = useState<string>("Processing");
|
||||
const [tablePreview, setTablePreview] = useState<TablePreviewData | null>(null);
|
||||
const inputRef = useRef<HTMLInputElement | null>(null);
|
||||
const [loadedFromCache, setLoadedFromCache] = useState(false);
|
||||
const [isProcessing, setIsProcessing] = useState(false);
|
||||
const [error, setError] = useState<string | null>(null);
|
||||
|
||||
// Analysis results
|
||||
const [analyzeResult, setAnalyzeResult] = useState<AnalyzeResponse | null>(null);
|
||||
const [cleanResult, setCleanResult] = useState<CleanResponse | null>(null);
|
||||
|
||||
const reset = () => {
|
||||
setFileMeta(null);
|
||||
setUploadedFile(null);
|
||||
setProgress(0);
|
||||
setProgressLabel("Processing");
|
||||
setTablePreview(null);
|
||||
setError(null);
|
||||
};
|
||||
|
||||
// Handle API calls
|
||||
const handleAnalyze = async () => {
|
||||
if (!uploadedFile) {
|
||||
setError("No file uploaded");
|
||||
return;
|
||||
}
|
||||
|
||||
setIsProcessing(true);
|
||||
setError(null);
|
||||
setProgressLabel("Analyzing dataset...");
|
||||
|
||||
try {
|
||||
const result = await analyzeDataset(uploadedFile);
|
||||
setAnalyzeResult(result);
|
||||
setProgressLabel("Analysis complete!");
|
||||
onAnalyze?.(); // Navigate to bias-analysis tab
|
||||
} catch (err: any) {
|
||||
setError(err.message || "Analysis failed");
|
||||
} finally {
|
||||
setIsProcessing(false);
|
||||
}
|
||||
};
|
||||
|
||||
const handleClean = async () => {
|
||||
if (!uploadedFile) {
|
||||
setError("No file uploaded");
|
||||
return;
|
||||
}
|
||||
|
||||
setIsProcessing(true);
|
||||
setError(null);
|
||||
setProgressLabel("Cleaning dataset...");
|
||||
|
||||
try {
|
||||
const result = await cleanDataset(uploadedFile);
|
||||
setCleanResult(result);
|
||||
setProgressLabel("Cleaning complete!");
|
||||
} catch (err: any) {
|
||||
setError(err.message || "Cleaning failed");
|
||||
} finally {
|
||||
setIsProcessing(false);
|
||||
}
|
||||
}; function tryParseCSV(text: string, maxRows = 50, maxCols = 40): TablePreviewData | null {
|
||||
const lines = text.split(/\r?\n/).filter(l => l.trim().length > 0);
|
||||
if (lines.length < 2) return null;
|
||||
const commaDensity = lines.slice(0, 10).filter(l => l.includes(',')).length;
|
||||
if (commaDensity < 2) return null;
|
||||
const parseLine = (line: string) => {
|
||||
const out: string[] = [];
|
||||
let cur = '';
|
||||
let inQuotes = false;
|
||||
for (let i = 0; i < line.length; i++) {
|
||||
const ch = line[i];
|
||||
if (ch === '"') {
|
||||
if (inQuotes && line[i + 1] === '"') { cur += '"'; i++; } else { inQuotes = !inQuotes; }
|
||||
} else if (ch === ',' && !inQuotes) {
|
||||
out.push(cur);
|
||||
cur = '';
|
||||
} else { cur += ch; }
|
||||
}
|
||||
out.push(cur);
|
||||
return out.map(c => c.trim());
|
||||
};
|
||||
const raw = lines.slice(0, maxRows).map(parseLine);
|
||||
if (raw.length === 0) return null;
|
||||
const headers = raw[0];
|
||||
const colCount = Math.min(headers.length, maxCols);
|
||||
const rows = raw.slice(1).map(r => r.slice(0, colCount));
|
||||
return { headers: headers.slice(0, colCount), rows, origin: 'csv' };
|
||||
}
|
||||
|
||||
// We no longer build table preview for JSON; revert JSON to raw text view.
|
||||
|
||||
const processFile = useCallback(async (f: File) => {
|
||||
if (!f) return;
|
||||
const isCSV = /\.csv$/i.test(f.name);
|
||||
setProgress(0);
|
||||
setUploadedFile(f); // Save the file for API calls
|
||||
|
||||
// For large files, show a progress bar while reading the file stream (no preview)
|
||||
if (f.size > 1024 * 1024) {
|
||||
setProgressLabel("Uploading");
|
||||
const metaObj: UploadedFileMeta = {
|
||||
name: f.name,
|
||||
size: f.size,
|
||||
type: f.type || "unknown",
|
||||
contentPreview: `Loading partial preview (first ${Math.round(PREVIEW_BYTES/1024)}KB)...`,
|
||||
};
|
||||
setFileMeta(metaObj);
|
||||
setTablePreview(null);
|
||||
// Save to IndexedDB immediately so it persists without needing full read
|
||||
(async () => {
|
||||
try { await saveLatestUpload(f, metaObj); } catch {}
|
||||
})();
|
||||
// Read head slice for partial preview & possible CSV table extraction
|
||||
try {
|
||||
const headBlob = f.slice(0, PREVIEW_BYTES);
|
||||
const headReader = new FileReader();
|
||||
headReader.onload = async () => {
|
||||
try {
|
||||
const buf = headReader.result as ArrayBuffer;
|
||||
const decoder = new TextDecoder();
|
||||
const text = decoder.decode(buf);
|
||||
setFileMeta(prev => prev ? { ...prev, contentPreview: text.slice(0, 4000) } : prev);
|
||||
if (isCSV) {
|
||||
const parsed = tryParseCSV(text);
|
||||
setTablePreview(parsed);
|
||||
} else {
|
||||
setTablePreview(null);
|
||||
}
|
||||
try { await saveLatestUpload(f, { ...metaObj, contentPreview: text.slice(0, 4000) }); } catch {}
|
||||
} catch { /* ignore */ }
|
||||
};
|
||||
headReader.readAsArrayBuffer(headBlob);
|
||||
} catch { /* ignore */ }
|
||||
// Use streaming read for progress without buffering entire file in memory
|
||||
try {
|
||||
const stream: ReadableStream<Uint8Array> | undefined = (typeof (f as any).stream === "function" ? (f as any).stream() : undefined);
|
||||
if (stream && typeof stream.getReader === "function") {
|
||||
const reader = stream.getReader();
|
||||
let loaded = 0;
|
||||
const total = f.size || 1;
|
||||
for (;;) {
|
||||
const { done, value } = await reader.read();
|
||||
if (done) break;
|
||||
loaded += value ? value.length : 0;
|
||||
const pct = Math.min(100, Math.round((loaded / total) * 100));
|
||||
setProgress(pct);
|
||||
}
|
||||
setProgress(100);
|
||||
} else {
|
||||
// Fallback to FileReader progress events
|
||||
const reader = new FileReader();
|
||||
reader.onprogress = (evt) => {
|
||||
if (evt.lengthComputable) {
|
||||
const pct = Math.min(100, Math.round((evt.loaded / evt.total) * 100));
|
||||
setProgress(pct);
|
||||
} else {
|
||||
setProgress((p) => (p < 90 ? p + 5 : p));
|
||||
}
|
||||
};
|
||||
reader.onloadend = () => setProgress(100);
|
||||
reader.onerror = () => setProgress(0);
|
||||
reader.readAsArrayBuffer(f);
|
||||
}
|
||||
} catch {
|
||||
setProgress(100);
|
||||
}
|
||||
return;
|
||||
}
|
||||
const reader = new FileReader();
|
||||
reader.onprogress = (evt) => {
|
||||
if (evt.lengthComputable) {
|
||||
const pct = Math.min(100, Math.round((evt.loaded / evt.total) * 100));
|
||||
setProgress(pct);
|
||||
} else {
|
||||
setProgress((p) => (p < 90 ? p + 5 : p));
|
||||
}
|
||||
};
|
||||
reader.onload = async () => {
|
||||
try {
|
||||
const buf = reader.result as ArrayBuffer;
|
||||
const decoder = new TextDecoder();
|
||||
const text = decoder.decode(buf);
|
||||
const metaObj: UploadedFileMeta = {
|
||||
name: f.name,
|
||||
size: f.size,
|
||||
type: f.type || "unknown",
|
||||
contentPreview: text.slice(0, 4000),
|
||||
};
|
||||
setFileMeta(metaObj);
|
||||
if (isCSV) {
|
||||
const parsed = tryParseCSV(text);
|
||||
setTablePreview(parsed);
|
||||
} else {
|
||||
setTablePreview(null);
|
||||
}
|
||||
// Save file blob and meta to browser cache (IndexedDB)
|
||||
try {
|
||||
await saveLatestUpload(f, metaObj);
|
||||
} catch {}
|
||||
setProgressLabel("Processing");
|
||||
setProgress(100);
|
||||
} catch (e) {
|
||||
const metaObj: UploadedFileMeta = {
|
||||
name: f.name,
|
||||
size: f.size,
|
||||
type: f.type || "unknown",
|
||||
contentPreview: "Unable to decode preview.",
|
||||
};
|
||||
setFileMeta(metaObj);
|
||||
setTablePreview(null);
|
||||
try {
|
||||
await saveLatestUpload(f, metaObj);
|
||||
} catch {}
|
||||
setProgressLabel("Processing");
|
||||
setProgress(100);
|
||||
}
|
||||
};
|
||||
reader.onerror = () => {
|
||||
setProgress(0);
|
||||
};
|
||||
reader.readAsArrayBuffer(f);
|
||||
}, []);
|
||||
|
||||
function handleFileChange(e: React.ChangeEvent<HTMLInputElement>) {
|
||||
const f = e.target.files?.[0];
|
||||
processFile(f as File);
|
||||
}
|
||||
|
||||
const onDragOver = (e: React.DragEvent<HTMLDivElement>) => {
|
||||
e.preventDefault();
|
||||
setIsDragging(true);
|
||||
};
|
||||
const onDragLeave = () => setIsDragging(false);
|
||||
const onDrop = (e: React.DragEvent<HTMLDivElement>) => {
|
||||
e.preventDefault();
|
||||
setIsDragging(false);
|
||||
const f = e.dataTransfer.files?.[0];
|
||||
processFile(f as File);
|
||||
};
|
||||
|
||||
// Load last cached upload on mount (processing tab only)
|
||||
useEffect(() => {
|
||||
let ignore = false;
|
||||
if (tab !== "processing") return;
|
||||
(async () => {
|
||||
try {
|
||||
const { file, meta } = await getLatestUpload();
|
||||
if (!ignore && meta) {
|
||||
setFileMeta(meta as UploadedFileMeta);
|
||||
if (file) {
|
||||
setUploadedFile(file);
|
||||
}
|
||||
setLoadedFromCache(true);
|
||||
}
|
||||
} catch {}
|
||||
})();
|
||||
return () => {
|
||||
ignore = true;
|
||||
};
|
||||
}, [tab]); function renderTabContent() {
|
||||
switch (tab) {
|
||||
case "processing":
|
||||
return (
|
||||
<div className="space-y-4 max-w-[1100px] xl:max-w-[1200px] w-full mx-auto">
|
||||
<h2 className="text-xl font-semibold">Upload & Process Data</h2>
|
||||
<p className="text-sm text-slate-600">Upload a CSV / JSON / text file. We will later parse, detect PII, and queue analyses.</p>
|
||||
<div className="flex flex-col gap-3 min-w-0">
|
||||
<div
|
||||
onDragOver={onDragOver}
|
||||
onDragLeave={onDragLeave}
|
||||
onDrop={onDrop}
|
||||
className={
|
||||
"rounded-lg border-2 border-dashed p-6 text-center transition-colors " +
|
||||
(isDragging ? "border-brand-600 bg-brand-50" : "border-slate-300 hover:border-brand-300")
|
||||
}
|
||||
>
|
||||
<p className="text-sm text-slate-600">Drag & drop a CSV / JSON / TXT here, or click to browse.</p>
|
||||
<div className="mt-3">
|
||||
<button
|
||||
type="button"
|
||||
onClick={() => inputRef.current?.click()}
|
||||
className="inline-flex items-center rounded-md bg-brand-600 px-4 py-2 text-white text-sm font-medium shadow hover:bg-brand-500"
|
||||
>
|
||||
Choose file
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
<input
|
||||
ref={inputRef}
|
||||
type="file"
|
||||
accept=".csv,.json,.txt"
|
||||
onChange={handleFileChange}
|
||||
className="hidden"
|
||||
aria-hidden
|
||||
/>
|
||||
{progress > 0 && (
|
||||
<div className="w-full">
|
||||
<div className="h-2 w-full rounded-full bg-slate-200 overflow-hidden">
|
||||
<div
|
||||
className="h-2 bg-brand-600 transition-all"
|
||||
style={{ width: `${progress}%` }}
|
||||
/>
|
||||
</div>
|
||||
<div className="mt-1 text-xs text-slate-500">{progressLabel} {progress}%</div>
|
||||
</div>
|
||||
)}
|
||||
{fileMeta && (
|
||||
<div className="rounded-md border border-slate-200 p-4 bg-white shadow-sm">
|
||||
<div className="flex items-center justify-between mb-2">
|
||||
<div className="text-sm font-medium">{fileMeta.name}</div>
|
||||
<div className="text-xs text-slate-500">{Math.round(fileMeta.size / 1024)} KB</div>
|
||||
</div>
|
||||
{loadedFromCache && (
|
||||
<div className="mb-2 text-[11px] text-brand-700">Loaded from browser cache</div>
|
||||
)}
|
||||
<div className="mb-3 text-xs text-slate-500">{fileMeta.type || "Unknown type"}</div>
|
||||
{/* Table preview when structured data detected; otherwise show text */}
|
||||
{tablePreview && tablePreview.origin === 'csv' ? (
|
||||
<div className="max-h-64 w-full min-w-0 overflow-x-auto overflow-y-auto rounded-md bg-slate-50">
|
||||
<table className="min-w-full text-xs">
|
||||
<thead className="sticky top-0 bg-slate-100">
|
||||
<tr>
|
||||
{tablePreview.headers.map((h, idx) => (
|
||||
<th key={idx} className="text-left font-semibold px-3 py-2 border-b border-slate-200 whitespace-nowrap">{h}</th>
|
||||
))}
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
{tablePreview.rows.map((r, i) => (
|
||||
<tr key={i} className={i % 2 === 0 ? "" : "bg-slate-100/50"}>
|
||||
{r.map((c, j) => (
|
||||
<td key={j} className="px-3 py-1.5 border-b border-slate-100 whitespace-nowrap max-w-[24ch] overflow-hidden text-ellipsis">{c}</td>
|
||||
))}
|
||||
</tr>
|
||||
))}
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
) : (
|
||||
<pre className="max-h-64 overflow-auto text-xs bg-slate-50 p-3 rounded-md whitespace-pre-wrap leading-relaxed">
|
||||
{fileMeta.contentPreview || "(no preview)"}
|
||||
</pre>
|
||||
)}
|
||||
|
||||
{error && (
|
||||
<div className="mt-3 p-3 bg-red-50 border border-red-200 rounded-md text-sm text-red-700">
|
||||
❌ {error}
|
||||
</div>
|
||||
)}
|
||||
|
||||
{analyzeResult && (
|
||||
<div className="mt-3 p-3 bg-green-50 border border-green-200 rounded-md text-sm text-green-700">
|
||||
✅ Analysis complete! View results in tabs.
|
||||
<a
|
||||
href={getReportUrl(analyzeResult.report_file)}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="ml-2 underline"
|
||||
>
|
||||
Download Report
|
||||
</a>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{cleanResult && (
|
||||
<div className="mt-3 p-3 bg-green-50 border border-green-200 rounded-md text-sm text-green-700">
|
||||
✅ Cleaning complete! {cleanResult.summary.total_cells_affected} cells anonymized.
|
||||
<div className="mt-2 flex gap-2">
|
||||
<a
|
||||
href={getReportUrl(cleanResult.files.cleaned_csv)}
|
||||
download
|
||||
className="underline"
|
||||
>
|
||||
Download Cleaned CSV
|
||||
</a>
|
||||
<a
|
||||
href={getReportUrl(cleanResult.files.audit_report)}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="underline"
|
||||
>
|
||||
View Audit Report
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
|
||||
<div className="mt-3 flex justify-end gap-2">
|
||||
<button
|
||||
type="button"
|
||||
onClick={async () => {
|
||||
reset();
|
||||
try { await deleteLatestUpload(); } catch {}
|
||||
setLoadedFromCache(false);
|
||||
setAnalyzeResult(null);
|
||||
setCleanResult(null);
|
||||
}}
|
||||
className="text-xs rounded-md border px-3 py-1.5 hover:bg-slate-50"
|
||||
>
|
||||
Clear
|
||||
</button>
|
||||
<button
|
||||
type="button"
|
||||
onClick={handleClean}
|
||||
disabled={isProcessing}
|
||||
className="text-xs rounded-md bg-green-600 text-white px-3 py-1.5 hover:bg-green-500 disabled:opacity-50 disabled:cursor-not-allowed"
|
||||
>
|
||||
{isProcessing ? "Processing..." : "Clean (PII)"}
|
||||
</button>
|
||||
<button
|
||||
type="button"
|
||||
onClick={handleAnalyze}
|
||||
disabled={isProcessing}
|
||||
className="text-xs rounded-md bg-brand-600 text-white px-3 py-1.5 hover:bg-brand-500 disabled:opacity-50 disabled:cursor-not-allowed"
|
||||
>
|
||||
{isProcessing ? "Processing..." : "Analyze"}
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
case "bias-analysis":
|
||||
return (
|
||||
<div className="space-y-4">
|
||||
<h2 className="text-xl font-semibold">Bias Analysis</h2>
|
||||
{analyzeResult ? (
|
||||
<div className="space-y-4">
|
||||
<div className="grid grid-cols-2 gap-4">
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<div className="text-sm text-slate-600">Overall Bias Score</div>
|
||||
<div className="text-2xl font-bold">{(analyzeResult.bias_metrics.overall_bias_score * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<div className="text-sm text-slate-600">Violations Detected</div>
|
||||
<div className="text-2xl font-bold">{analyzeResult.bias_metrics.violations_detected.length}</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<h3 className="font-semibold mb-2">Model Performance</h3>
|
||||
<div className="grid grid-cols-4 gap-2 text-sm">
|
||||
<div>
|
||||
<div className="text-slate-600">Accuracy</div>
|
||||
<div className="font-medium">{(analyzeResult.model_performance.accuracy * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
<div>
|
||||
<div className="text-slate-600">Precision</div>
|
||||
<div className="font-medium">{(analyzeResult.model_performance.precision * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
<div>
|
||||
<div className="text-slate-600">Recall</div>
|
||||
<div className="font-medium">{(analyzeResult.model_performance.recall * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
<div>
|
||||
<div className="text-slate-600">F1 Score</div>
|
||||
<div className="font-medium">{(analyzeResult.model_performance.f1_score * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
) : (
|
||||
<p className="text-sm text-slate-600">Upload and analyze a dataset to see bias metrics.</p>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
case "risk-analysis":
|
||||
return (
|
||||
<div className="space-y-4">
|
||||
<h2 className="text-xl font-semibold">Risk Analysis</h2>
|
||||
{analyzeResult ? (
|
||||
<div className="space-y-4">
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<div className="text-sm text-slate-600">Overall Risk Score</div>
|
||||
<div className="text-2xl font-bold">{(analyzeResult.risk_assessment.overall_risk_score * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
|
||||
{cleanResult && (
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<h3 className="font-semibold mb-2">PII Detection Results</h3>
|
||||
<div className="text-sm space-y-1">
|
||||
<div>Cells Anonymized: <span className="font-medium">{cleanResult.summary.total_cells_affected}</span></div>
|
||||
<div>Columns Removed: <span className="font-medium">{cleanResult.summary.columns_removed.length}</span></div>
|
||||
<div>Columns Anonymized: <span className="font-medium">{cleanResult.summary.columns_anonymized.length}</span></div>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
) : (
|
||||
<p className="text-sm text-slate-600">Upload and analyze a dataset to see risk assessment.</p>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
case "bias-risk-mitigation":
|
||||
return (
|
||||
<div className="space-y-4">
|
||||
<h2 className="text-xl font-semibold">Mitigation Suggestions</h2>
|
||||
{analyzeResult && analyzeResult.recommendations.length > 0 ? (
|
||||
<div className="space-y-2">
|
||||
{analyzeResult.recommendations.map((rec, i) => (
|
||||
<div key={i} className="p-3 bg-blue-50 border border-blue-200 rounded-md text-sm">
|
||||
{rec}
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
) : (
|
||||
<p className="text-sm text-slate-600">
|
||||
Recommendations will appear here after analysis.
|
||||
</p>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
case "results":
|
||||
return (
|
||||
<div className="space-y-4">
|
||||
<h2 className="text-xl font-semibold">Results Summary</h2>
|
||||
{(analyzeResult || cleanResult) ? (
|
||||
<div className="space-y-4">
|
||||
{analyzeResult && (
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<h3 className="font-semibold mb-2">Analysis Results</h3>
|
||||
<div className="text-sm space-y-1">
|
||||
<div>Dataset: {analyzeResult.filename}</div>
|
||||
<div>Rows: {analyzeResult.dataset_info.rows}</div>
|
||||
<div>Columns: {analyzeResult.dataset_info.columns}</div>
|
||||
<div>Bias Score: {(analyzeResult.bias_metrics.overall_bias_score * 100).toFixed(1)}%</div>
|
||||
<div>Risk Score: {(analyzeResult.risk_assessment.overall_risk_score * 100).toFixed(1)}%</div>
|
||||
</div>
|
||||
<a
|
||||
href={getReportUrl(analyzeResult.report_file)}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="mt-3 inline-block text-sm text-brand-600 underline"
|
||||
>
|
||||
Download Full Report →
|
||||
</a>
|
||||
</div>
|
||||
)}
|
||||
|
||||
{cleanResult && (
|
||||
<div className="p-4 bg-white rounded-lg border">
|
||||
<h3 className="font-semibold mb-2">Cleaning Results</h3>
|
||||
<div className="text-sm space-y-1">
|
||||
<div>Original: {cleanResult.dataset_info.original_rows} rows × {cleanResult.dataset_info.original_columns} cols</div>
|
||||
<div>Cleaned: {cleanResult.dataset_info.cleaned_rows} rows × {cleanResult.dataset_info.cleaned_columns} cols</div>
|
||||
<div>Cells Anonymized: {cleanResult.summary.total_cells_affected}</div>
|
||||
<div>Columns Removed: {cleanResult.summary.columns_removed.length}</div>
|
||||
<div>GDPR Compliant: {cleanResult.gdpr_compliance.length} articles applied</div>
|
||||
</div>
|
||||
<div className="mt-3 flex gap-2">
|
||||
<a
|
||||
href={getReportUrl(cleanResult.files.cleaned_csv)}
|
||||
download
|
||||
className="text-sm text-brand-600 underline"
|
||||
>
|
||||
Download Cleaned CSV →
|
||||
</a>
|
||||
<a
|
||||
href={getReportUrl(cleanResult.files.audit_report)}
|
||||
target="_blank"
|
||||
rel="noopener noreferrer"
|
||||
className="text-sm text-brand-600 underline"
|
||||
>
|
||||
View Audit Report →
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
) : (
|
||||
<p className="text-sm text-slate-600">
|
||||
Process a dataset to see aggregated results.
|
||||
</p>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
default:
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
return (
|
||||
<div className="h-full overflow-y-auto p-6 bg-white/60">
|
||||
{renderTabContent()}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
Reference in New Issue
Block a user