mirror of
https://github.com/PlatypusPus/MushroomEmpire.git
synced 2026-02-07 22:18:59 +00:00
Merge branch 'main' into main
This commit is contained in:
4
.gitignore
vendored
4
.gitignore
vendored
@@ -57,4 +57,6 @@ reports/*.pdf
|
||||
|
||||
# Data (keep demo dataset)
|
||||
*.csv
|
||||
!Datasets/loan_data.csv
|
||||
!Datasets/loan_data.csv
|
||||
|
||||
Data
|
||||
142
Datasets/loan_data_cleaned_audit.json
Normal file
142
Datasets/loan_data_cleaned_audit.json
Normal file
@@ -0,0 +1,142 @@
|
||||
{
|
||||
"metadata": {
|
||||
"timestamp": "2025-11-07T08:59:26.645555",
|
||||
"original_rows": 45000,
|
||||
"original_columns": 14,
|
||||
"cleaned_rows": 45000,
|
||||
"cleaned_columns": 13,
|
||||
"presidio_version": "enabled",
|
||||
"gpu_acceleration": {
|
||||
"enabled": true,
|
||||
"cuda_available": true,
|
||||
"device": "NVIDIA GeForce RTX 4050 Laptop GPU",
|
||||
"gpu_memory_gb": 5.99658203125
|
||||
}
|
||||
},
|
||||
"summary": {
|
||||
"columns_removed": [
|
||||
"person_education"
|
||||
],
|
||||
"columns_anonymized": [
|
||||
"loan_intent",
|
||||
"person_home_ownership"
|
||||
],
|
||||
"total_cells_affected": 49906
|
||||
},
|
||||
"details": {
|
||||
"loan_intent": {
|
||||
"action": "ANONYMIZED",
|
||||
"strategies_applied": [
|
||||
"HASH"
|
||||
],
|
||||
"reason": "Contains ORGANIZATION entities. Applied hash anonymization to protect privacy.",
|
||||
"entity_types_found": [
|
||||
"ORGANIZATION"
|
||||
],
|
||||
"num_affected_rows": 23512,
|
||||
"percentage_affected": "52.2%",
|
||||
"examples": [
|
||||
{
|
||||
"before": "MEDICAL",
|
||||
"after": "a978e21c3754862e57020380a3e9ea7ed66e16dfa3db6fb28b"
|
||||
},
|
||||
{
|
||||
"before": "MEDICAL",
|
||||
"after": "a978e21c3754862e57020380a3e9ea7ed66e16dfa3db6fb28b"
|
||||
},
|
||||
{
|
||||
"before": "MEDICAL",
|
||||
"after": "a978e21c3754862e57020380a3e9ea7ed66e16dfa3db6fb28b"
|
||||
}
|
||||
],
|
||||
"presidio_metrics": {
|
||||
"avg_confidence": 0.85,
|
||||
"detections": [
|
||||
{
|
||||
"entity_type": "ORGANIZATION",
|
||||
"count": 49,
|
||||
"avg_confidence": 0.85,
|
||||
"max_confidence": 0.85,
|
||||
"min_confidence": 0.85
|
||||
}
|
||||
]
|
||||
},
|
||||
"gdpr_compliance": []
|
||||
},
|
||||
"person_home_ownership": {
|
||||
"action": "ANONYMIZED",
|
||||
"strategies_applied": [
|
||||
"MASK"
|
||||
],
|
||||
"reason": "Contains ORGANIZATION, LOCATION entities. Applied mask anonymization to protect privacy.",
|
||||
"entity_types_found": [
|
||||
"ORGANIZATION",
|
||||
"LOCATION"
|
||||
],
|
||||
"num_affected_rows": 26394,
|
||||
"percentage_affected": "58.7%",
|
||||
"examples": [
|
||||
{
|
||||
"before": "RENT",
|
||||
"after": "****"
|
||||
},
|
||||
{
|
||||
"before": "OWN",
|
||||
"after": "***"
|
||||
},
|
||||
{
|
||||
"before": "RENT",
|
||||
"after": "****"
|
||||
}
|
||||
],
|
||||
"presidio_metrics": {
|
||||
"avg_confidence": 0.85,
|
||||
"detections": [
|
||||
{
|
||||
"entity_type": "ORGANIZATION",
|
||||
"count": 24,
|
||||
"avg_confidence": 0.85,
|
||||
"max_confidence": 0.85,
|
||||
"min_confidence": 0.85
|
||||
},
|
||||
{
|
||||
"entity_type": "LOCATION",
|
||||
"count": 49,
|
||||
"avg_confidence": 0.85,
|
||||
"max_confidence": 0.85,
|
||||
"min_confidence": 0.85
|
||||
}
|
||||
]
|
||||
},
|
||||
"gdpr_compliance": [
|
||||
"Art. 4(1) - Personal data (location)"
|
||||
]
|
||||
},
|
||||
"person_education": {
|
||||
"action": "REMOVED",
|
||||
"reason": "Contains HIGH risk PII requiring removal",
|
||||
"entity_types_found": [
|
||||
"ORGANIZATION"
|
||||
],
|
||||
"risk_level": "HIGH",
|
||||
"presidio_metrics": {
|
||||
"detections": [
|
||||
{
|
||||
"entity_type": "ORGANIZATION",
|
||||
"count": 4,
|
||||
"avg_confidence": 0.85,
|
||||
"max_confidence": 0.85,
|
||||
"min_confidence": 0.85
|
||||
}
|
||||
]
|
||||
},
|
||||
"gdpr_compliance": []
|
||||
}
|
||||
},
|
||||
"compliance": {
|
||||
"gdpr_articles_applied": [
|
||||
"Art. 4(1) - Personal data (location)"
|
||||
],
|
||||
"risk_mitigation": {}
|
||||
}
|
||||
}
|
||||
105
cleaning.py
105
cleaning.py
@@ -1,6 +1,7 @@
|
||||
"""
|
||||
Data Cleaning Module - PII Detection and Anonymization
|
||||
Handles GDPR-compliant data cleaning using Presidio for PII detection
|
||||
GPU-accelerated for faster processing of large datasets
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
@@ -20,6 +21,35 @@ try:
|
||||
except ImportError:
|
||||
PRESIDIO_AVAILABLE = False
|
||||
print("Warning: Presidio not installed. Run: pip install presidio-analyzer presidio-anonymizer")
|
||||
# GPU detection
|
||||
try:
|
||||
import torch
|
||||
CUDA_AVAILABLE = torch.cuda.is_available()
|
||||
if CUDA_AVAILABLE:
|
||||
GPU_DEVICE = 0 # Use first GPU
|
||||
GPU_NAME = torch.cuda.get_device_name(0)
|
||||
GPU_MEMORY = torch.cuda.get_device_properties(0).total_memory / 1024**3 # GB
|
||||
else:
|
||||
GPU_DEVICE = -1
|
||||
GPU_NAME = None
|
||||
GPU_MEMORY = 0
|
||||
except ImportError:
|
||||
CUDA_AVAILABLE = False
|
||||
GPU_DEVICE = -1
|
||||
GPU_NAME = None
|
||||
GPU_MEMORY = 0
|
||||
|
||||
try:
|
||||
import spacy
|
||||
SPACY_AVAILABLE = True
|
||||
# Check if spaCy can use GPU
|
||||
if CUDA_AVAILABLE:
|
||||
spacy.require_gpu()
|
||||
except ImportError:
|
||||
SPACY_AVAILABLE = False
|
||||
except Exception:
|
||||
# GPU not available for spaCy, will fall back to CPU
|
||||
pass
|
||||
|
||||
|
||||
def convert_to_json_serializable(obj):
|
||||
@@ -112,18 +142,23 @@ class DataCleaner:
|
||||
... )
|
||||
"""
|
||||
|
||||
def __init__(self, df: pd.DataFrame, config: Optional[CleaningConfig] = None):
|
||||
def __init__(self, df: pd.DataFrame, config: Optional[CleaningConfig] = None, use_gpu: bool = True):
|
||||
"""
|
||||
Initialize the data cleaner
|
||||
|
||||
Args:
|
||||
df: Input DataFrame to clean
|
||||
config: Optional custom configuration
|
||||
use_gpu: Whether to use GPU acceleration if available (default: True)
|
||||
"""
|
||||
self.df = df.copy()
|
||||
self.config = config or CleaningConfig()
|
||||
self.audit_log = []
|
||||
self.cleaning_actions = {}
|
||||
self.use_gpu = use_gpu and CUDA_AVAILABLE
|
||||
|
||||
# Display GPU info
|
||||
self._display_gpu_info()
|
||||
|
||||
# Initialize Presidio engines
|
||||
if PRESIDIO_AVAILABLE:
|
||||
@@ -134,8 +169,29 @@ class DataCleaner:
|
||||
"Install with: pip install presidio-analyzer presidio-anonymizer"
|
||||
)
|
||||
|
||||
def _display_gpu_info(self):
|
||||
"""Display GPU availability and configuration"""
|
||||
print("\n" + "="*70)
|
||||
print("🖥️ HARDWARE CONFIGURATION")
|
||||
print("="*70)
|
||||
|
||||
if CUDA_AVAILABLE and self.use_gpu:
|
||||
print(f"✓ GPU ACCELERATION: ENABLED")
|
||||
print(f" Device: {GPU_NAME}")
|
||||
print(f" Memory: {GPU_MEMORY:.2f} GB")
|
||||
print(f" CUDA Device ID: {GPU_DEVICE}")
|
||||
elif CUDA_AVAILABLE and not self.use_gpu:
|
||||
print(f"⚠️ GPU ACCELERATION: DISABLED (use_gpu=False)")
|
||||
print(f" Available GPU: {GPU_NAME} ({GPU_MEMORY:.2f} GB)")
|
||||
else:
|
||||
print(f"⚠️ GPU ACCELERATION: NOT AVAILABLE")
|
||||
print(f" Reason: {'PyTorch not installed' if not 'torch' in dir() else 'No CUDA device detected'}")
|
||||
print(f" Install: pip install torch --index-url https://download.pytorch.org/whl/cu121")
|
||||
|
||||
print("="*70 + "\n")
|
||||
|
||||
def _init_presidio(self):
|
||||
"""Initialize Presidio analyzer and anonymizer engines with Nordic recognizers"""
|
||||
"""Initialize Presidio analyzer and anonymizer engines with GPU support"""
|
||||
# Create NLP engine configuration
|
||||
configuration = {
|
||||
"nlp_engine_name": "spacy",
|
||||
@@ -147,18 +203,23 @@ class DataCleaner:
|
||||
provider = NlpEngineProvider(nlp_configuration=configuration)
|
||||
nlp_engine = provider.create_engine()
|
||||
|
||||
# Create registry and add Nordic recognizers
|
||||
registry = RecognizerRegistry()
|
||||
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
|
||||
# Enable GPU for spaCy if available
|
||||
if self.use_gpu and SPACY_AVAILABLE:
|
||||
try:
|
||||
import spacy
|
||||
# Move spaCy model to GPU
|
||||
spacy.require_gpu()
|
||||
print("✓ spaCy GPU acceleration enabled")
|
||||
except Exception as e:
|
||||
print(f"⚠️ Could not enable spaCy GPU: {e}")
|
||||
print(" Falling back to CPU for NLP processing")
|
||||
|
||||
# Add Nordic-specific recognizers
|
||||
self._add_nordic_recognizers(registry)
|
||||
|
||||
# Create analyzer with custom registry
|
||||
self.analyzer = AnalyzerEngine(registry=registry, nlp_engine=nlp_engine)
|
||||
# Create analyzer with NLP engine
|
||||
self.analyzer = AnalyzerEngine(nlp_engine=nlp_engine)
|
||||
self.anonymizer = AnonymizerEngine()
|
||||
|
||||
print("✓ Presidio engines initialized with Nordic PII recognizers")
|
||||
device_info = "GPU" if self.use_gpu else "CPU"
|
||||
print(f"✓ Presidio engines initialized successfully ({device_info} mode)")
|
||||
except Exception as e:
|
||||
# Fallback to default configuration if spaCy model not available
|
||||
print(f"Warning: Could not load spaCy model, using default configuration: {e}")
|
||||
@@ -313,7 +374,7 @@ class DataCleaner:
|
||||
scan_all_cells: bool
|
||||
) -> Dict[str, List[Dict]]:
|
||||
"""
|
||||
Detect PII at column and cell level
|
||||
Detect PII at column and cell level (GPU-accelerated when available)
|
||||
|
||||
Returns:
|
||||
Dictionary mapping column names to list of detected entities
|
||||
@@ -332,7 +393,8 @@ class DataCleaner:
|
||||
text_columns = df.select_dtypes(include=['object']).columns.tolist()
|
||||
columns_to_scan = list(set(columns_to_scan + text_columns))
|
||||
|
||||
print(f" Scanning {len(columns_to_scan)} columns: {columns_to_scan}")
|
||||
device_info = f"GPU ({GPU_NAME})" if self.use_gpu else "CPU"
|
||||
print(f" Scanning {len(columns_to_scan)} columns using {device_info}: {columns_to_scan}")
|
||||
|
||||
for column in columns_to_scan:
|
||||
print(f" Analyzing '{column}'...", end=" ")
|
||||
@@ -632,7 +694,13 @@ class DataCleaner:
|
||||
'original_columns': len(self.df.columns),
|
||||
'cleaned_rows': len(cleaned_df),
|
||||
'cleaned_columns': len(cleaned_df.columns),
|
||||
'presidio_version': 'enabled' if PRESIDIO_AVAILABLE else 'disabled'
|
||||
'presidio_version': 'enabled' if PRESIDIO_AVAILABLE else 'disabled',
|
||||
'gpu_acceleration': {
|
||||
'enabled': self.use_gpu,
|
||||
'cuda_available': CUDA_AVAILABLE,
|
||||
'device': GPU_NAME if self.use_gpu else 'CPU',
|
||||
'gpu_memory_gb': GPU_MEMORY if self.use_gpu else 0
|
||||
}
|
||||
},
|
||||
'summary': {
|
||||
'total_rows': len(self.df),
|
||||
@@ -1285,19 +1353,22 @@ def main():
|
||||
import sys
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python cleaning.py <data_file.csv>")
|
||||
print("Usage: python cleaning.py <data_file.csv> [--no-gpu]")
|
||||
print("Example: python cleaning.py Datasets/loan_data.csv")
|
||||
print("Options:")
|
||||
print(" --no-gpu Disable GPU acceleration (use CPU only)")
|
||||
sys.exit(1)
|
||||
|
||||
data_path = sys.argv[1]
|
||||
use_gpu = '--no-gpu' not in sys.argv
|
||||
|
||||
# Load data
|
||||
print(f"Loading data from {data_path}...")
|
||||
df = pd.read_csv(data_path)
|
||||
print(f"Loaded {len(df)} rows × {len(df.columns)} columns")
|
||||
|
||||
# Initialize cleaner
|
||||
cleaner = DataCleaner(df)
|
||||
# Initialize cleaner with GPU support
|
||||
cleaner = DataCleaner(df, use_gpu=use_gpu)
|
||||
|
||||
# Run cleaning (interactive mode)
|
||||
cleaned_df, audit_report = cleaner.clean(
|
||||
|
||||
167
discovery/main.py
Normal file
167
discovery/main.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import csv
|
||||
import re
|
||||
from pathlib import Path
|
||||
from collections import Counter
|
||||
from datetime import datetime
|
||||
|
||||
ROOT = Path("../Data/Politics")
|
||||
|
||||
# Try to import spaCy, fall back to basic extraction if not available
|
||||
try:
|
||||
import spacy
|
||||
nlp = spacy.load("en_core_web_sm")
|
||||
USE_SPACY = True
|
||||
except:
|
||||
USE_SPACY = False
|
||||
|
||||
# Regex patterns for deterministic detection
|
||||
patterns = {
|
||||
"EMAIL": re.compile(r"[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+"),
|
||||
"PHONE": re.compile(r"(?:\+?\d{1,3}[-.\s]?)?(?:\(?\d{2,4}\)?[-.\s]?)?\d{3,4}[-.\s]?\d{3,4}"),
|
||||
"UUID": re.compile(r"\b[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}\b"),
|
||||
"IBAN": re.compile(r"\b[A-Z]{2}\d{2}[A-Z0-9]{1,30}\b"),
|
||||
"DATE": re.compile(r"\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b|\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b|(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}"),
|
||||
"URL": re.compile(r"https?://[^\s]+"),
|
||||
"SSN": re.compile(r"\b\d{3}-\d{2}-\d{4}\b"),
|
||||
}
|
||||
|
||||
def find_entities(text):
|
||||
"""Extract entities using regex patterns."""
|
||||
found = {}
|
||||
for label, pattern in patterns.items():
|
||||
matches = pattern.findall(text)
|
||||
if matches:
|
||||
found[label] = list(set(matches))[:5] # Limit to 5 per type
|
||||
return found
|
||||
|
||||
def extract_with_spacy(text):
|
||||
"""Extract named entities using spaCy."""
|
||||
if not USE_SPACY:
|
||||
return {}, {}, {}
|
||||
|
||||
doc = nlp(text[:10000]) # Limit text length for performance
|
||||
|
||||
persons = []
|
||||
orgs = []
|
||||
locations = []
|
||||
|
||||
for ent in doc.ents:
|
||||
if ent.label_ == "PERSON":
|
||||
persons.append(ent.text)
|
||||
elif ent.label_ == "ORG":
|
||||
orgs.append(ent.text)
|
||||
elif ent.label_ in ["GPE", "LOC"]:
|
||||
locations.append(ent.text)
|
||||
|
||||
# Return most common entities
|
||||
return (
|
||||
dict(Counter(persons).most_common(5)),
|
||||
dict(Counter(orgs).most_common(5)),
|
||||
dict(Counter(locations).most_common(5))
|
||||
)
|
||||
|
||||
def extract_metadata(text, filename):
|
||||
"""Extract basic metadata from text."""
|
||||
metadata = {
|
||||
"char_count": len(text),
|
||||
"word_count": len(text.split()),
|
||||
"line_count": text.count('\n') + 1,
|
||||
"file_extension": Path(filename).suffix,
|
||||
}
|
||||
return metadata
|
||||
|
||||
def detect_content_type(text):
|
||||
"""Heuristic content type detection."""
|
||||
text_lower = text.lower()
|
||||
|
||||
# Check for common document types
|
||||
if any(word in text_lower[:1000] for word in ['dear', 'sincerely', 'regards']):
|
||||
return "letter"
|
||||
elif any(word in text_lower[:500] for word in ['article', 'section', 'amendment']):
|
||||
return "legal"
|
||||
elif any(word in text_lower[:500] for word in ['press release', 'for immediate release']):
|
||||
return "press_release"
|
||||
elif re.search(r'^\s*#', text[:100], re.MULTILINE):
|
||||
return "markdown"
|
||||
elif '<html' in text_lower[:200]:
|
||||
return "html"
|
||||
else:
|
||||
return "unknown"
|
||||
|
||||
# Define fieldnames
|
||||
fieldnames = [
|
||||
"filename", "file_extension", "char_count", "word_count", "line_count",
|
||||
"content_type", "text_preview",
|
||||
"EMAIL", "PHONE", "UUID", "IBAN", "DATE", "URL", "SSN",
|
||||
"persons", "organizations", "locations"
|
||||
]
|
||||
|
||||
print("Processing files...")
|
||||
with open("discovery_dataset.csv", "w", newline="", encoding="utf-8") as csvfile:
|
||||
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
||||
writer.writeheader()
|
||||
|
||||
file_count = 0
|
||||
for path in ROOT.rglob("*"):
|
||||
if not path.is_file():
|
||||
continue
|
||||
|
||||
# Skip binary files
|
||||
if path.suffix.lower() in ['.exe', '.dll', '.so', '.dylib', '.bin', '.jpg', '.png', '.gif', '.pdf']:
|
||||
continue
|
||||
|
||||
try:
|
||||
text = path.read_text(encoding="utf-8", errors="ignore")
|
||||
except Exception as e:
|
||||
print(f" Error reading {path.name}: {e}")
|
||||
continue
|
||||
|
||||
if not text.strip():
|
||||
continue
|
||||
|
||||
file_count += 1
|
||||
if file_count % 10 == 0:
|
||||
print(f"Processed {file_count} files...")
|
||||
|
||||
# Initialize row
|
||||
row = {"filename": str(path.relative_to(ROOT.parent))}
|
||||
|
||||
# Extract metadata
|
||||
metadata = extract_metadata(text, path.name)
|
||||
row.update(metadata)
|
||||
|
||||
# Detect content type
|
||||
row["content_type"] = detect_content_type(text)
|
||||
row["text_preview"] = text[:500].replace('\n', ' ').replace('\r', ' ')
|
||||
|
||||
# Extract entities with regex
|
||||
entities = find_entities(text)
|
||||
for key, values in entities.items():
|
||||
row[key] = "; ".join(values) if values else ""
|
||||
|
||||
# Fill in missing pattern fields
|
||||
for pattern_key in ["EMAIL", "PHONE", "UUID", "IBAN", "DATE", "URL", "SSN"]:
|
||||
if pattern_key not in row:
|
||||
row[pattern_key] = ""
|
||||
|
||||
# Extract named entities with spaCy
|
||||
if USE_SPACY:
|
||||
persons, orgs, locs = extract_with_spacy(text)
|
||||
row["persons"] = "; ".join([f"{k}({v})" for k, v in persons.items()])
|
||||
row["organizations"] = "; ".join([f"{k}({v})" for k, v in orgs.items()])
|
||||
row["locations"] = "; ".join([f"{k}({v})" for k, v in locs.items()])
|
||||
else:
|
||||
row["persons"] = ""
|
||||
row["organizations"] = ""
|
||||
row["locations"] = ""
|
||||
|
||||
writer.writerow(row)
|
||||
|
||||
print(f"\nComplete! Processed {file_count} files.")
|
||||
print(f"Output: discovery_dataset.csv")
|
||||
|
||||
# Print summary statistics
|
||||
if file_count > 0:
|
||||
print("\nTo install spaCy for better entity extraction:")
|
||||
print(" pip install spacy")
|
||||
print(" python -m spacy download en_core_web_sm")
|
||||
Reference in New Issue
Block a user